09/07/2020

The EM Algorithm gives Sample-Optimality for Learning Mixtures of Well-Separated Gaussians

Jeongyeol Kwon, Constantine Caramanis

Keywords: Non-convex optimization, Clustering, Concentration inequalities, High-dimensional statistics, PAC learning

Abstract: We consider the problem of spherical Gaussian Mixture models with $k \geq 3$ components when the components are well separated. A fundamental previous result established that separation of $\Omega(\sqrt{\log k})$ is necessary and sufficient for identifiability of the parameters with \textit{polynomial} sample complexity (Regev and Vijayaraghavan, 2017). In the same context, we show that $\tilde{O} (kd/\epsilon^2)$ samples suffice for any $\epsilon \lesssim 1/k$, closing the gap from polynomial to linear, and thus giving the first optimal sample upper bound for the parameter estimation of well-separated Gaussian mixtures. We accomplish this by proving a new result for the Expectation-Maximization (EM) algorithm: we show that EM converges locally, under separation $\Omega(\sqrt{\log k})$. The previous best-known guarantee required $\Omega(\sqrt{k})$ separation (Yan, et al., 2017). Unlike prior work, our results do not assume or use prior knowledge of the (potentially different) mixing weights or variances of the Gaussian components. Furthermore, our results show that the finite-sample error of EM does not depend on non-universal quantities such as pairwise distances between means of Gaussian components.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at COLT 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers