04/08/2021

Approximation Algorithms for Socially Fair Clustering

Yury Makarychev, Ali Vakilian

Keywords:

Abstract: We present an (e^{O(p)} (log \ell) / (log log \ell))-approximation algorithm for socially fair clustering with the l_p-objective. In this problem, we are given a set of points in a metric space. Each point belongs to one (or several) of \ell groups. The goal is to find a k-medians, k-means, or, more generally, l_p-clustering that is simultaneously good for all of the groups. More precisely, we need to find a set of k centers C so as to minimize the maximum over all groups j of \sum_{u in group j} d(u, C)^p. The socially fair clustering problem was independently proposed by Abbasi, Bhaskara, and Venkatasubramanian (2021) and Ghadiri, Samadi, and Vempala (2021). Our algorithm improves and generalizes their O(\ell)-approximation algorithms for the problem. The natural LP relaxation for the problem has an integrality gap of \Omega(\ell). In order to obtain our result, we introduce a strengthened LP relaxation and show that it has an integrality gap of \Theta((log \ell) / (log log \ell)) for a fixed p. Additionally, we present a bicriteria approximation algorithm, which generalizes the bicriteria approximation of Abbasi et al. (2021).

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at COLT 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers