26/08/2020

Stochastic Recursive Variance-Reduced Cubic Regularization Methods

Dongruo Zhou, Quanquan Gu

Keywords:

Abstract: Stochastic Variance-Reduced Cubic regularization (SVRC) algorithms have received increasing attention due to its improved gradient/Hessian complexities (i.e., number of queries to stochastic gradient/Hessian oracles) to find local minima for nonconvex finite-sum optimization. However, it is unclear whether existing SVRC algorithms can be further improved. Moreover, the semi-stochastic Hessian estimator adopted in existing SVRC algorithms prevents the use of Hessian-vector product-based fast cubic subproblem solvers, which makes SVRC algorithms computationally intractable for high-dimensional problems. In this paper, we first present a Stochastic Recursive Variance-Reduced Cubic regularization method (SRVRC) using a recursively updated semi-stochastic gradient and Hessian estimators. It enjoys improved gradient and Hessian complexities to find an $(\epsilon, \sqrt{\epsilon})$-approximate local minimum, and outperforms the state-of-the-art SVRC algorithms. Built upon SRVRC, we further propose a Hessian-free SRVRC algorithm, namely SRVRC$_{\text{free}}$, which only needs $\tilde O(n\epsilon^{-2} \land \epsilon^{-3})$ stochastic gradient and Hessian-vector product computations, where $n$ is the number of component functions in the finite-sum objective and $\epsilon$ is the optimization precision. This outperforms the best-known result $\tilde O(\epsilon^{-3.5})$ achieved by stochastic cubic regularization algorithm proposed in \cite{tripuraneni2018stochastic}.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AISTATS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers