26/08/2020

EM Converges for a Mixture of Many Linear Regressions

Jeongyeol Kwon, Constantine Caramanis

Keywords:

Abstract: We study the convergence of the Expectation-Maximization (EM) algorithm for mixtures of linear regressions with an arbitrary number $k$ of components. We show that as long as signal-to-noise ratio (SNR) is $\tilde{\Omega}(k)$, well-initialized EM converges to the true regression parameters. Previous results for $k \geq 3$ have only established local convergence for the noiseless setting, i.e., where SNR is infinitely large. Our results enlarge the scope to the environment with noises, and notably, we establish a statistical error rate that is independent of the norm (or pairwise distance) of the regression parameters. In particular, our results imply exact recovery as $\sigma \rightarrow 0$, in contrast to most previous local convergence results for EM, where the statistical error scaled with the norm of parameters. Standard moment-method approaches may be applied to guarantee we are in the region where our local convergence guarantees apply.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AISTATS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers