06/12/2021

Approximating the Permanent with Deep Rejection Sampling

Juha Harviainen, Antti Röyskö, Mikko Koivisto

Keywords:

Abstract: We present a randomized approximation scheme for the permanent of a matrix with nonnegative entries. Our scheme extends a recursive rejection sampling method of Huber and Law (SODA 2008) by replacing the permanent upper bound with a linear combination of the subproblem bounds at a moderately large depth of the recursion tree. This method, we call deep rejection sampling, is empirically shown to outperform the basic, depth-zero variant, as well as a related method by Kuck et al. (NeurIPS 2019). We analyze the expected running time of the scheme on random $(0, 1)$-matrices where each entry is independently $1$ with probability $p$. Our bound is superior to a previous one for $p$ less than $1/5$, matching another bound that was only known to hold when every row and column has density exactly $p$.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers