26/08/2020

Sharp Analysis of Expectation-Maximization for Weakly Identifiable Models

Raaz Dwivedi, Nhat Ho, Koulik Khamaru, Martin Wainwright, Michael Jordan, Bin Yu

Keywords:

Abstract: We study a class of weakly identifiable location-scale mixture models for which the maximum likelihood estimates based on $n$ i.i.d. samples are known to have lower accuracy than the classical $n^{- \frac{1}{2}}$ error. We investigate whether the Expectation-Maximization (EM) algorithm also converges slowly for these models. We provide a rigorous characterization of EM for fitting a weakly identifiable Gaussian mixture in a univariate setting where we prove that the EM algorithm converges in order $n^{\frac{3}{4}}$ steps and returns estimates that are at a Euclidean distance of order ${ n^{- \frac{1}{8}}}$ and ${ n^{-\frac{1} {4}}}$ from the true location and scale parameter respectively. Establishing the slow rates in the univariate setting requires a novel localization argument with two stages, with each stage involving an epoch-based argument applied to a different surrogate EM operator at the population level. We demonstrate several multivariate ($d \geq 2$) examples that exhibit the same slow rates as the univariate case. We also prove slow statistical rates in higher dimensions in a special case, when the fitted covariance is constrained to be a multiple of identity.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AISTATS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers