26/08/2020

Safe-Bayesian Generalized Linear Regression

Rianne de Heide, Alisa Kirichenko, Peter Grunwald, Nishant Mehta

Keywords:

Abstract: We study generalized Bayesian inference under misspecification, i.e.\ when the model is `wrong but useful'. Generalized Bayes equips the likelihood with a learning rate $\eta$. We show that for generalized linear models (GLMs), $\eta$-generalized Bayes concentrates around the best approximation of the truth within the model for specific $\eta \neq 1$, even under severely misspecified noise, as long as the tails of the true distribution are exponential. We derive MCMC samplers for generalized Bayesian lasso and logistic regression and give examples of both simulated and real-world data in which generalized Bayes substantially outperforms standard Bayes.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AISTATS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers