06/12/2021

Finite-Sample Analysis of Off-Policy TD-Learning via Generalized Bellman Operators

Zaiwei Chen, Siva Theja Maguluri, Sanjay Shakkottai, Karthikeyan Shanmugam

Keywords:

Abstract: In TD-learning, off-policy sampling is known to be more practical than on-policy sampling, and by decoupling learning from data collection, it enables data reuse. It is known that policy evaluation has the interpretation of solving a generalized Bellman equation. In this paper, we derive finite-sample bounds for any general off-policy TD-like stochastic approximation algorithm that solves for the fixed-point of this generalized Bellman operator. Our key step is to show that the generalized Bellman operator is simultaneously a contraction mapping with respect to a weighted $\ell_p$-norm for each $p$ in $[1,\infty)$, with a common contraction factor. Off-policy TD-learning is known to suffer from high variance due to the product of importance sampling ratios. A number of algorithms (e.g. $Q^\pi(\lambda)$, Tree-Backup$(\lambda)$, Retrace$(\lambda)$, and $Q$-trace) have been proposed in the literature to address this issue. Our results immediately imply finite-sample bounds of these algorithms. In particular, we provide first-known finite-sample guarantees for $Q^\pi(\lambda)$, Tree-Backup$(\lambda)$, and Retrace$(\lambda)$, and improve the best known bounds of $Q$-trace in \citep{chen2021finite}. Moreover, we show the bias-variance trade-offs in each of these algorithms.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers

 15:22