06/12/2021

Faster Non-asymptotic Convergence for Double Q-learning

Lin Zhao, Huaqing Xiong, Yingbin Liang

Keywords: theory, reinforcement learning and planning

Abstract: Double Q-learning (Hasselt, 2010) has gained significant success in practice due to its effectiveness in overcoming the overestimation issue of Q-learning. However, the theoretical understanding of double Q-learning is rather limited. The only existing finite-time analysis was recently established in (Xiong et al. 2020), where the polynomial learning rate adopted in the analysis typically yields a slower convergence rate. This paper tackles the more challenging case of a constant learning rate, and develops new analytical tools that improve the existing convergence rate by orders of magnitude. Specifically, we show that synchronous double Q-learning attains an $\epsilon$-accurate global optimum with a time complexity of $\tilde{\Omega}\left(\frac{\ln D}{(1-\gamma)^7\epsilon^2} \right)$, and the asynchronous algorithm achieves a time complexity of $\tilde{\Omega}\left(\frac{L}{(1-\gamma)^7\epsilon^2} \right)$, where $D$ is the cardinality of the state-action space, $\gamma$ is the discount factor, and $L$ is a parameter related to the sampling strategy for asynchronous double Q-learning. These results improve the existing convergence rate by the order of magnitude in terms of its dependence on all major parameters $(\epsilon,1-\gamma, D, L)$. This paper presents a substantial step toward the full understanding of the fast convergence of double-Q learning.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers

 15:22