18/07/2021

Private Stochastic Convex Optimization: Optimal Rates in L1 Geometry

Hilal Asi, Vitaly Feldman, Tomer Koren, Kunal Talwar

Keywords: Deep Learning, Algorithms, Multitask and Transfer Learning; Algorithms, Online Learning, Social Aspects of Machine Learning, Privacy, Anonymity, and Security

Abstract: Stochastic convex optimization over an $\ell_1$-bounded domain is ubiquitous in machine learning applications such as LASSO but remains poorly understood when learning with differential privacy. We show that, up to logarithmic factors the optimal excess population loss of any $(\epsilon,\delta)$-differentially private optimizer is $\sqrt{\log(d)/n} + \sqrt{d}/\epsilon n.$ The upper bound is based on a new algorithm that combines the iterative localization approach of Feldman et al. (2020) with a new analysis of private regularized mirror descent. It applies to $\ell_p$ bounded domains for $p\in [1,2]$ and queries at most $n^{3/2}$ gradients improving over the best previously known algorithm for the $\ell_2$ case which needs $n^2$ gradients. Further, we show that when the loss functions satisfy additional smoothness assumptions, the excess loss is upper bounded (up to logarithmic factors) by $\sqrt{\log(d)/n} + (\log(d)/\epsilon n)^{2/3}.$ This bound is achieved by a new variance-reduced version of the Frank-Wolfe algorithm that requires just a single pass over the data. We also show that the lower bound in this case is the minimum of the two rates mentioned above.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICML 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers