26/08/2020

Integrals over Gaussians under Linear Domain Constraints

Alexandra Gessner, Oindrila Kanjilal, Philipp Hennig

Keywords:

Abstract: Integrals of linearly constrained multivariate Gaussian densities are a frequent problem in machine learning and statistics, arising in tasks like generalized linear models and Bayesian optimization. Yet they are notoriously hard to compute, and to further complicate matters, the numerical values of such integrals may be very small. We present an efficient black-box algorithm that exploits geometry for the estimation of integrals over a small, truncated Gaussian volume, and to simulate therefrom. Our algorithm uses the Holmes-Diaconis-Ross (HDR) method combined with an analytic version of elliptical slice sampling (ESS). Adapted to the linear setting, ESS allows for rejection-free sampling, because intersections of ellipses and domain boundaries have closed-form solutions. The key idea of HDR is to decompose the integral into easier-to-compute conditional probabilities by using a sequence of nested domains. Remarkably, it allows for direct computation of the logarithm of the integral value and thus enables the computation of extremely small probability masses. We demonstrate the effectiveness of our tailored combination of HDR and ESS on high-dimensional integrals and on entropy search for Bayesian optimization.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AISTATS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers