18/07/2021

Active Slices for Sliced Stein Discrepancy

Wenbo Gong, Kaibo Zhang, Yingzhen Li, Jose Miguel Hernandez-Lobato

Keywords: , Deep Learning, Efficient Inference Methods, Algorithms, Kernel Methods

Abstract: Sliced Stein discrepancy (SSD) and its kernelized variants have demonstrated promising successes in goodness-of-fit tests and model learning in high dimensions. Despite the theoretical elegance, their empirical performance depends crucially on the search of the optimal slicing directions to discriminate between two distributions. Unfortunately, previous gradient-based optimisation approach returns sub-optimal results for the slicing directions: it is computationally expensive, sensitive to initialization, and it lacks theoretical guarantee for convergence. We address these issues in two steps. First, we show in theory that the requirement of using optimal slicing directions in the kernelized version of SSD can be relaxed, validating the resulting discrepancy with finite random slicing directions. Second, given that good slicing directions are crucial for practical performance, we propose a fast algorithm for finding good slicing directions based on ideas of active sub-space construction and spectral decomposition. Experiments in goodness-of-fit tests and model learning show that our approach achieves both the best performance and the fastest convergence. Especially, we demonstrate 14-80x speed-up in goodness-of-fit tests when compared with the gradient-based approach.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICML 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers