26/08/2020

Gaussian-Smoothed Optimal Transport: Metric Structure and Statistical Efficiency

Ziv Goldfeld, Kristjan Greenewald

Keywords:

Abstract: Optimal transport (OT), and in particular the Wasserstein distance, has seen a surge of interest and applications in machine learning. However, empirical approximation under Wasserstein distances suffers from a severe curse of dimensionality, rendering them impractical in high dimensions. As a result, entropically regularized OT has become a popular workaround. However, while it enjoys fast algorithms and better statistical properties, it looses the metric structure that Wasserstein distances enjoy. This work proposes a novel Gaussian-smoothed OT (GOT) framework, that achieves the best of both worlds: preserving the 1-Wasserstein metric structure while alleviating the empirical approximation curse of dimensionality. Furthermore, as the Gaussian-smoothing parameter shrinks to zero, GOT $\Gamma$-converges towards classic OT (with convergence of optimizers), thus serving as a natural extension. An empirical study that validates the theoretical results is provided, promoting Gaussian-smoothed OT as a powerful alternative to entropic OT.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AISTATS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers