12/07/2020

Implicit differentiation of Lasso-type models for hyperparameter optimization

Quentin Bertrand, Quentin Klopfenstein, Mathieu Blondel, Samuel Vaiter, Alexandre Gramfort, Joseph Salmon

Keywords: Optimization - General

Abstract: Setting regularization parameters for Lasso-type estimators is notoriously difficult, though crucial for obtaining the best accuracy. The most popular hyperparameter optimization approach is grid-search on a held-out dataset. However, grid-search requires to choose a predefined grid of parameters and scales exponentially in the number of parameters. Another class of approaches casts hyperparameter optimization as a bi-level optimization problem, typically solved by gradient descent. The key challenge for these approaches is the estimation of the gradient w.r.t. the hyperparameters. Computing that gradient via forward or backward automatic differentiation usually suffers from high memory comsumption, while implicit differentiation typically involves solving a linear system which can be prohibitive and numerically unstable. In addition, implicit differentiation usually assumes smooth loss functions, which is not the case of Lasso-type problems. This work introduces an efficient implicit differentiation algorithm, without matrix inversion, tailored for Lasso-type problems. Our proposal scales to high-dimensional data by leveraging the sparsity of the solutions. Empirically, we demonstrate that the proposed method outperforms a large number of standard methods for hyperparameter optimization.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICML 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers