03/08/2020

Ordering Variables for Weighted Model Integration

Vincent Derkinderen, Evert Heylen, Pedro Zuidberg Dos Martires, Samuel Kolb, Luc Raedt

Keywords:

Abstract: State-of-the-art probabilistic inference algorithms, such as variable elimination and search-based approaches, rely heavily on the order in which variables are marginalized. Finding the optimal ordering is an NP-complete problem. This computational hardness has led to heuristics to find adequate variable orderings. However, these heuristics have mostly been targeting discrete random variables. We show how variable ordering heuristics from the discrete domain can be ported to the discrete-continuous domain. We equip the state-of-the-art F-XSDD(BR) solver for discrete-continuous problems with such heuristics. Additionally, we propose a novel heuristic called bottom-up min-fill (BU-MiF), yielding a solver capable of determining good variable orderings without having to rely on the user to provide such an ordering. We empirically demonstrate its performance on a set of benchmark problems.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at UAI 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers