06/12/2020

Multi-task Additive Models for Robust Estimation and Automatic Structure Discovery

Yingjie Wang, Hong Chen, Feng Zheng, Chen Xu, Tieliang Gong, Yanhong Chen

Keywords: Applications -> Time Series Analysis; Probabilistic Methods -> Variational Inference, Probabilistic Methods -> Causal Inference

Abstract: Additive models have attracted much attention for high-dimensional regression estimation and variable selection. However, the existing models are usually limited to the single-task learning framework under the mean squared error (MSE) criterion, where the utilization of variable structure depends heavily on priori knowledge among variables. For high-dimensional observations in real environment, e.g., Coronal Mass Ejections (CMEs) data, the learning performance of previous methods may be degraded seriously due to the complex non-Gaussian noise and the insufficiency of prior knowledge on variable structure. To tackle this problem, we propose a new class of additive models, called Multi-task Additive Models (MAM), by integrating the mode-induced metric, the structure-based regularizer, and additive hypothesis spaces into a bilevel optimization framework. Our approach does not require any priori knowledge of variable structure and suits for high-dimensional data with complex noise, e.g., skewed noise, heavy-tailed noise, and outliers. A smooth iterative optimization algorithm with convergence guarantees is provided to implement MAM efficiently. Experiments on simulations and the CMEs analysis demonstrate the competitive performance of our approach for robust estimation and automatic structure discovery.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers