12/07/2020

On Efficient Low Distortion Ultrametric Embedding

Vincent Cohen-Addad, Karthik C. S., Guillaume Lagarde

Keywords: Unsupervised and Semi-Supervised Learning

Abstract: A classic problem in unsupervised learning and data analysis is to find simpler and easy-to-visualize representations of the data that preserve its essential properties. A widely-used method to preserve the underlying hierarchical structure of the data while reducing its complexity is to find an embedding of the data into a tree or an ultrametric. The most popular algorithms for this task are the classic "linkage" algorithms (single, average, or complete). However, these methods exhibit a quite prohibitive running time of $\Theta(n^2)$. In this paper, we provide a new algorithm which takes as input a set of points $P$ in $R^d$, and for every $c\ge 1$, runs in time $n^{1+O(1/c^2)}$ to output an ultrametric $\Delta$ such that for any two points $u,v$ in $P$, we have $\Delta(u,v)$ is within a multiplicative factor of $5c$ to the distance between $u$ and $v$ in the "best" ultrametric representation of $P$. Here, the best ultrametric is the ultrametric $\Delta^*$ that minimizes the maximum distance distortion with respect to the $\ell_2$ distance, namely that minimizes $\max_{u,v \in P} \Delta^*(u,v)/||u-v||_2$." We complement the above result by showing that under popular complexity theoretic assumptions, for every constant $\epsilon>0$, no algorithm with running time $n^{2-\epsilon}$ can distinguish between inputs that admit isometric embedding and inputs that can incur a distortion of 3/2 in L∞ -metric. Finally, we present empirical evaluation on classic machine learning datasets and show that the output of our algorithm is comparable to the output of the linkage algorithms while achieving a much faster running time.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICML 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers