12/07/2020

Curse of Dimensionality on Randomized Smoothing for Certifiable Robustness

Aounon Kumar, Alexander Levine, Tom Goldstein, Soheil Feizi

Keywords: Adversarial Examples

Abstract: Randomized smoothing, using just a simple isotropic Gaussian distribution, has been shown to produce good robustness guarantees against $\ell_2$-norm bounded adversaries. In this work, we show that extending the smoothing technique to defend against other attack models can be challenging, especially in the high-dimensional regime. In particular, for a vast class of i.i.d.~smoothing distributions, we prove that the largest $\ell_p$-radius that can be certified decreases as $O(1/d^{\frac{1}{2} - \frac{1}{p}})$ with dimension $d$ for $p > 2$. Notably, for $p \geq 2$, this dependence on $d$ is no better than that of the $\ell_p$-radius that can be certified using isotropic Gaussian smoothing, essentially putting a matching lower bound on the robustness radius. When restricted to {\it generalized} Gaussian smoothing, these two bounds can be shown to be within a constant factor of each other in an asymptotic sense, establishing that Gaussian smoothing provides the best possible results, up to a constant factor, when $p \geq 2$. We present experimental results on CIFAR to validate our theory. For other smoothing distributions, such as, a uniform distribution within an $\ell_1$ or an $\ell_\infty$-norm ball, we show upper bounds of the form $O(1 / d)$ and $O(1 / d^{1 - \frac{1}{p}})$ respectively, which have an even worse dependence on $d$.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICML 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers