06/12/2020

Near-Optimal SQ Lower Bounds for Agnostically Learning Halfspaces and ReLUs under Gaussian Marginals

Ilias Diakonikolas, Daniel Kane, Nikos Zarifis

Keywords:

Abstract: We study the fundamental problems of agnostically learning halfspaces and ReLUs under Gaussian marginals. In the former problem, given labeled examples $(\bx, y)$ from an unknown distribution on $\R^d \times \{ \pm 1\}$, whose marginal distribution on $\bx$ is the standard Gaussian and the labels $y$ can be arbitrary, the goal is to output a hypothesis with 0-1 loss $\opt+\eps$, where $\opt$ is the 0-1 loss of the best-fitting halfspace. In the latter problem, given labeled examples $(\bx, y)$ from an unknown distribution on $\R^d \times \R$, whose marginal distribution on $\bx$ is the standard Gaussian and the labels $y$ can be arbitrary, the goal is to output a hypothesis with square loss $\opt+\eps$, where $\opt$ is the square loss of the best-fitting ReLU. We prove Statistical Query (SQ) lower bounds of $d^{\poly(1/\eps)}$ for both of these problems. Our SQ lower bounds provide strong evidence that current upper bounds for these tasks are essentially best possible.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers