06/12/2020

Statistical-Query Lower Bounds via Functional Gradients

Surbhi Goel, Aravind Gollakota, Adam Klivans

Keywords:

Abstract: We give the first statistical-query lower bounds for agnostically learning any non-polynomial activation with respect to Gaussian marginals (e.g., ReLU, sigmoid, sign). For the specific problem of ReLU regression (equivalently, agnostically learning a ReLU), we show that any statistical-query algorithm with tolerance $n^{-(1/\epsilon)^b}$ must use at least $2^{n^c} \epsilon$ queries for some constants $b, c > 0$, where $n$ is the dimension and $\epsilon$ is the accuracy parameter. Our results rule out {\em general} (as opposed to correlational) SQ learning algorithms, which is unusual for real-valued learning problems. Our techniques involve a gradient boosting procedure for ``amplifying'' recent lower bounds due to Diakonikolas et al.\ (COLT 2020) and Goel et al.\ (ICML 2020) on the SQ dimension of functions computed by two-layer neural networks. The crucial new ingredient is the use of a nonstandard convex functional during the boosting procedure. This also yields a best-possible reduction between two commonly studied models of learning: agnostic learning and probabilistic concepts.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers