06/12/2021

Instance-Dependent Bounds for Zeroth-order Lipschitz Optimization with Error Certificates

Francois Bachoc, Tom Cesari, Sébastien Gerchinovitz

Keywords: theory, optimization

Abstract: We study the problem of zeroth-order (black-box) optimization of a Lipschitz function $f$ defined on a compact subset $\mathcal{X}$ of $\mathbb{R}^d$, with the additional constraint that algorithms must certify the accuracy of their recommendations. We characterize the optimal number of evaluations of any Lipschitz function $f$ to find and certify an approximate maximizer of $f$ at accuracy $\varepsilon$. Under a weak assumption on $\mathcal{X}$, this optimal sample complexity is shown to be nearly proportional to the integral $\int_{\mathcal{X}} \mathrm{d}\boldsymbol{x}/( \max(f) - f(\boldsymbol{x}) + \varepsilon )^d$. This result, which was only (and partially) known in dimension $d=1$, solves an open problem dating back to 1991. In terms of techniques, our upper bound relies on a packing bound by Bouttier et al. (2020) for the Piyavskii-Shubert algorithm that we link to the above integral. We also show that a certified version of the computationally tractable DOO algorithm matches these packing and integral bounds. Our instance-dependent lower bound differs from traditional worst-case lower bounds in the Lipschitz setting and relies on a local worst-case analysis that could likely prove useful for other learning tasks.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers