04/08/2021

A Statistical Taylor Theorem and Extrapolation of Truncated Densities

Constantinos Daskalakis, Vasilis Kontonis, Christos Tzamos, Emmanouil Zampetakis

Keywords:

Abstract: We show a statistical version of Taylor's theorem and apply this result to non-parametric density estimation from truncated samples, which is a classical challenge in Statistics [Woodroofe 1985, Stute 1993]. The single-dimensional version of our theorem has the following implication: "For any distribution P on [0, 1] with a smooth log-density function, given samples from the conditional distribution of P on [a, a + \varepsilon] \subset [0, 1], we can efficiently identify an approximation to P over the whole interval [0, 1], with quality of approximation that improves with the smoothness of P". To the best of knowledge, our result is the first in the area of non-parametric density estimation from truncated samples, which works under the hard truncation model, where the samples outside some survival set S are never observed, and applies to multiple dimensions. In contrast, previous works assume single dimensional data where each sample has a different survival set $S$ so that samples from the whole support will ultimately be collected.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at COLT 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers