06/12/2020

On Uniform Convergence and Low-Norm Interpolation Learning

Lijia Zhou, D.J. Sutherland, Nati Srebro

Keywords:

Abstract: We consider an underdetermined noisy linear regression model where the minimum-norm interpolating predictor is known to be consistent, and ask: can uniform convergence in a norm ball, or at least (following Nagarajan and Kolter) the subset of a norm ball that the algorithm selects on a typical input set, explain this success? We show that uniformly bounding the difference between empirical and population errors cannot show any learning in the norm ball, and cannot show consistency for any set, even one depending on the exact algorithm and distribution. But we argue we can explain the consistency of the minimal-norm interpolator with a slightly weaker, yet standard, notion: uniform convergence of zero-error predictors in a norm ball. We use this to bound the generalization error of low- (but not minimal-)norm interpolating predictors.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers