12/07/2020

Robust One-Bit Recovery via ReLU Generative Networks: Near-Optimal Statistical Rate and Global Landscape Analysis

Shuang Qiu, Xiaohan Wei, Zhuoran Yang

Keywords: Optimization - Non-convex

Abstract: We study the robust one-bit compressed sensing problem whose goal is to design an algorithm that faithfully recovers any sparse target vector $\theta_0\in\mathbb{R}^d$ \textit{uniformly} via $m$ quantized noisy measurements. Specifically, we consider a new framework for this problem where the sparsity is implicitly enforced via mapping a low dimensional representation $x_0 \in \RR^k$ through a known $n$-layer ReLU generative network $G:\mathbb{R}^k\rightarrow\mathbb{R}^d$ such that $\theta_0 = G(x_0)$. Such a framework poses low-dimensional priors on $\theta_0$ without a known sparsity basis. We propose to recover the target $G(x_0)$ solving an unconstrained empirical risk minimization (ERM). Under a weak \textit{sub-exponential measurement assumption}, we establish a joint statistical and computational analysis. In particular, we prove that the ERM estimator in this new framework achieves a statistical rate of $m=\tilde{\mathcal{O}}(kn \log d /\varepsilon^2)$ recovering any $G(x_0)$ uniformly up to an error $\varepsilon$. When the network is shallow (i.e., $n$ is small), we show this rate matches the information-theoretic lower bound up to logarithm factors on $\varepsilon^{-1}$. From the lens of computation, we prove that under proper conditions on the ReLU weights, our proposed empirical risk, despite non-convexity, has no stationary point outside of small neighborhoods around the true representation $x_0$ and its negative multiple. Furthermore, we show that the global minimizer of the empirical risk stays within the neighborhood around $x_0$ rather than its negative multiple under further assumptions on ReLU weights.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICML 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers