06/12/2020

Federated Principal Component Analysis

Andreas Grammenos, Rodrigo Mendoza Smith, Jon Crowcroft, Cecilia Mascolo

Keywords:

Abstract: We present a federated, asynchronous, and $(\varepsilon, \delta)$-differentially private algorithm for $\PCA$ in the memory-limited setting. % Our algorithm incrementally computes local model updates using a streaming procedure and adaptively estimates its $r$ leading principal components when only $\mathcal{O}(dr)$ memory is available with $d$ being the dimensionality of the data. % We guarantee differential privacy via an input-perturbation scheme in which the covariance matrix of a dataset $\B{X} \in \R^{d \times n}$ is perturbed with a non-symmetric random Gaussian matrix with variance in $\mathcal{O}\left(\left(\frac{d}{n}\right)^2 \log d \right)$, thus improving upon the state-of-the-art. % Furthermore, contrary to previous federated or distributed algorithms for $\PCA$, our algorithm is also invariant to permutations in the incoming data, which provides robustness against straggler or failed nodes. % Numerical simulations show that, while using limited-memory, our algorithm exhibits performance that closely matches or outperforms traditional non-federated algorithms, and in the absence of communication latency, it exhibits attractive horizontal scalability.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers