06/12/2021

On the Sample Complexity of Privately Learning Axis-Aligned Rectangles

Menachem Sadigurschi, Uri Stemmer

Keywords: theory, privacy

Abstract: We revisit the fundamental problem of learning Axis-Aligned-Rectangles over a finite grid $X^d\subseteq\mathbb{R}^d$ with differential privacy. Existing results show that the sample complexity of this problem is at most $\min\left\{ d{\cdot}\log|X| \;,\; d^{1.5}{\cdot}\left(\log^*|X| \right)^{1.5}\right\}$. That is, existing constructions either require sample complexity that grows linearly with $\log|X|$, or else it grows super linearly with the dimension $d$. We present a novel algorithm that reduces the sample complexity to only $\tilde{O}\left\{d{\cdot}\left(\log^*|X|\right)^{1.5}\right\}$, attaining a dimensionality optimal dependency without requiring the sample complexity to grow with $\log|X|$. The technique used in order to attain this improvement involves the deletion of "exposed" data-points on the go, in a fashion designed to avoid the cost of the adaptive composition theorems.The core of this technique may be of individual interest, introducing a new method for constructing statistically-efficient private algorithms.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers