12/07/2020

Private Counting from Anonymous Messages: Near-Optimal Accuracy with Vanishing Communication Overhead

Badih Ghazi, Ravi Kumar, Pasin Manurangsi, Rasmus Pagh

Keywords: Privacy-preserving Statistics and Machine Learning

Abstract: Differential privacy (DP) is a formal notion for quantifying the privacy loss of algorithms. Algorithms in the central model of DP achieve high accuracy but make the strongest trust assumptions whereas those in the local DP model make the weakest trust assumptions but incur substantial accuracy loss. The shuffled DP model [Bittau et al 2017, Erlingsson et al 2019, Cheu et al 19] has recently emerged as a feasible middle ground between the central and local models, providing stronger trust assumptions than the former while promising higher accuracies than the latter. In this paper, we obtain practical communication-efficient algorithms in the shuffled DP model for two basic aggregation primitives: 1) binary summation, and 2) histograms over a moderate number of buckets. Our algorithms achieve accuracy that is arbitrarily close to that of central DP algorithms with an expected communication per user essentially matching what is needed without any privacy constraints! We demonstrate the practicality of our algorithms by experimentally evaluating them and comparing their performance to several widely-used protocols such as Randomized Response [Warner 1965] and RAPPOR [Erlingsson et al. 2014].

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICML 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers