26/04/2020

Sign Bits Are All You Need for Black-Box Attacks

Abdullah Al-Dujaili, Una-May O'Reilly

Keywords: Black-box adversarial attack models, Deep Nets, Adversarial Examples, Black-Box Optimization, Zeroth-Order Optimization

Abstract: We present a novel black-box adversarial attack algorithm with state-of-the-art model evasion rates for query efficiency under $\ell_\infty$ and $\ell_2$ metrics. It exploits a \textit{sign-based}, rather than magnitude-based, gradient estimation approach that shifts the gradient estimation from continuous to binary black-box optimization. It adaptively constructs queries to estimate the gradient, one query relying upon the previous, rather than re-estimating the gradient each step with random query construction. Its reliance on sign bits yields a smaller memory footprint and it requires neither hyperparameter tuning or dimensionality reduction. Further, its theoretical performance is guaranteed and it can characterize adversarial subspaces better than white-box gradient-aligned subspaces. On two public black-box attack challenges and a model robustly trained against transfer attacks, the algorithm's evasion rates surpass all submitted attacks. For a suite of published models, the algorithm is $3.8\times$ less failure-prone while spending $2.5\times$ fewer queries versus the best combination of state of art algorithms. For example, it evades a standard MNIST model using just $12$ queries on average. Similar performance is observed on a standard IMAGENET model with an average of $579$ queries.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICLR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers