19/04/2021

ADePT: Auto-encoder based differentially private text transformation

Satyapriya Krishna, Rahul Gupta, Christophe Dupuy

Keywords:

Abstract: Privacy is an important concern when building statistical models on data containing personal information. Differential privacy offers a strong definition of privacy and can be used to solve several privacy concerns. Multiple solutions have been proposed for the differentially-private transformation of datasets containing sensitive information. However, such transformation algorithms offer poor utility in Natural Language Processing (NLP) tasks due to noise added in the process. This paper addresses this issue by providing a utility-preserving differentially private text transformation algorithm using auto-encoders. Our algorithm transforms text to offer robustness against attacks and produces transformations with high semantic quality that perform well on downstream NLP tasks. We prove our algorithm’s theoretical privacy guarantee and assess its privacy leakage under Membership Inference Attacks (MIA) on models trained with transformed data. Our results show that the proposed model performs better against MIA attacks while offering lower to no degradation in the utility of the underlying transformation process compared to existing baselines.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at EACL 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers