19/08/2021

Federated Model Distillation with Noise-Free Differential Privacy

Lichao Sun, Lingjuan Lyu

Keywords: Data Mining, Federated Learning, Privacy Preserving Data Mining, Multi-agent Learning, Trustable Learning

Abstract: Conventional federated learning directly averages model weights, which is only possible for collaboration between models with homogeneous architectures. Sharing prediction instead of weight removes this obstacle and eliminates the risk of white-box inference attacks in conventional federated learning. However, the predictions from local models are sensitive and would leak training data privacy to the public. To address this issue, one naive approach is adding the differentially private random noise to the predictions, which however brings a substantial trade-off between privacy budget and model performance. In this paper, we propose a novel framework called FEDMD-NFDP, which applies a Noise-FreeDifferential Privacy (NFDP) mechanism into a federated model distillation framework. Our extensive experimental results on various datasets validate that FEDMD-NFDP can deliver not only comparable utility and communication efficiency but also provide a noise-free differential privacy guarantee. We also demonstrate the feasibility of our FEDMD-NFDP by considering both IID and Non-IID settings, heterogeneous model architectures, and unlabelled public datasets from a different distribution.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at IJCAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers