18/07/2021

Provably End-to-end Label-noise Learning without Anchor Points

Xuefeng Li, Tongliang Liu, Bo Han, Gang Niu, Masashi Sugiyama

Keywords: Algorithms, Semi-Supervised Learning

Abstract: In label-noise learning, the transition matrix plays a key role in building statistically consistent classifiers. Existing consistent estimators for the transition matrix have been developed by exploiting anchor points. However, the anchor-point assumption is not always satisfied in real scenarios. In this paper, we propose an end-to-end framework for solving label-noise learning without anchor points, in which we simultaneously optimize two objectives: the cross entropy loss between the noisy label and the predicted probability by the neural network, and the volume of the simplex formed by the columns of the transition matrix. Our proposed framework can identify the transition matrix if the clean class-posterior probabilities are sufficiently scattered. This is by far the mildest assumption under which the transition matrix is provably identifiable and the learned classifier is statistically consistent. Experimental results on benchmark datasets demonstrate the effectiveness and robustness of the proposed method.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICML 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers