19/08/2021

Partial Multi-Label Optimal Margin Distribution Machine

Nan Cao, Teng Zhang, Hai Jin

Keywords: Machine Learning, Classification, Multi-instance; Multi-label; Multi-view learning, Weakly Supervised Learning

Abstract: Partial multi-label learning deals with the circumstance in which the ground-truth labels are not directly available but hidden in a candidate label set. Due to the presence of other irrelevant labels, vanilla multi-label learning methods are prone to be misled and fail to generalize well on unseen data, thus how to enable them to get rid of the noisy labels turns to be the core problem of partial multi-label learning. In this paper, we propose the Partial Multi-Label Optimal margin Distribution Machine (PML-ODM), which distinguishs the noisy labels through explicitly optimizing the distribution of ranking margin, and exhibits better generalization performance than minimum margin based counterparts. In addition, we propose a novel feature prototype representation to further enhance the disambiguation ability, and the non-linear kernels can also be applied to promote the generalization performance for linearly inseparable data. Extensive experiments on real-world data sets validates the superiority of our proposed method.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at IJCAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers