06/12/2020

Generalization error in high-dimensional perceptrons: Approaching Bayes error with convex optimization

Benjamin Aubin, Florent Krzakala, Yue Lu, Lenka Zdeborová

Keywords:

Abstract: We consider a commonly studied supervised classification of a synthetic dataset whose labels are generated by feeding a one-layer non-linear neural network with random iid inputs. We study the generalization performances of standard classifiers in the high-dimensional regime where $\alpha=\frac{n}{d}$ is kept finite in the limit of a high dimension $d$ and number of samples $n$. Our contribution is three-fold: First, we prove a formula for the generalization error achieved by $\ell_2$ regularized classifiers that minimize a convex loss. This formula was first obtained by the heuristic replica method of statistical physics. Secondly, focussing on commonly used loss functions and optimizing the $\ell_2$ regularization strength, we observe that while ridge regression performance is poor, logistic and hinge regression are surprisingly able to approach the Bayes-optimal generalization error extremely closely. As $\alpha \to \infty$ they lead to Bayes-optimal rates, a fact that does not follow from predictions of margin-based generalization error bounds. Third, we design an optimal loss and regularizer that provably leads to Bayes-optimal generalization error.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers