26/08/2020

Support recovery and sup-norm convergence rates for sparse pivotal estimation

Mathurin Massias, Quentin Bertrand, Alexandre Gramfort, Joseph Salmon

Keywords:

Abstract: In high dimensional sparse regression, pivotal estimators are estimators for which the optimal regularization parameter is independent of the noise level. The canonical pivotal estimator is the square-root Lasso, formulated along with its derivatives as a ``non-smooth + non-smooth'' optimization problem. Modern techniques to solve these include smoothing the datafitting term, to benefit from fast efficient proximal algorithms. In this work we show minimax sup-norm convergence rates for non smoothed and smoothed, single task and multitask square-root Lasso-type estimators. Thanks to our theoretical analysis, we provide some guidelines on how to set the smoothing hyperparameter, and illustrate on synthetic data the interest of such guidelines.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AISTATS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers