03/08/2020

Flexible Approximate Inference via Stratified Normalizing Flows

Chris Cundy, Stefano Ermon

Keywords:

Abstract: A major obstacle to forming posterior distributions in machine learning is the difficulty of evaluating partition functions. Monte-Carlo approaches are unbiased, but can suffer from high variance. Variational methods are biased, but tend to have lower variance. We develop an approximate inference procedure that allows explicit control of the bias/variance tradeoff, interpolating between the sampling and the variational regime. We use a normalizing flow to map the integrand onto a uniform distribution. We then randomly sample regions from a partition of this uniform distribution and fit simpler, local variational approximations in the image of these regions through the flow. When a partition with only one region is used, we recover standard variational inference, and in the limit of an infinitely fine partition we recover Monte-Carlo sampling. We show experiments validating the effectiveness of our approach.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at UAI 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers