09/07/2020

Calibrated Surrogate Losses for Adversarially Robust Classification

Han Bao, Clayton Scott, Masashi Sugiyama

Keywords: Loss functions, Adversarial learning and robustness, Classification, Excess risk bounds and generalization error bounds, Supervised learning

Abstract: Adversarially robust classification seeks a classifier that is insensitive to adversarial perturbations of test patterns. This problem is often formulated via a minimax objective, where the target loss is the worst-case value of the 0-1 loss subject to a bound on the size of perturbation. Recent work has proposed convex surrogates for the adversarial 0-1 loss, in an effort to make optimization more tractable. In this work, we consider the question of which surrogate losses are calibrated with respect to the adversarial 0-1 loss, meaning that minimization of the former implies minimization of the latter. We show that no convex surrogate loss is calibrated with respect to the adversarial 0-1 loss when restricted to the class of linear models. We further introduce a class of nonconvex losses and offer necessary and sufficient conditions for losses in this class to be calibrated.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at COLT 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers