26/04/2020

A Stochastic Derivative Free Optimization Method with Momentum

Eduard Gorbunov, Adel Bibi, Ozan Sener, El Houcine Bergou, Peter Richtarik

Keywords: derivative-free optimization, stochastic optimization, heavy ball momentum, importance sampling

Abstract: We consider the problem of unconstrained minimization of a smooth objective function in $\mathbb{R}^d$ in setting where only function evaluations are possible. We propose and analyze stochastic zeroth-order method with heavy ball momentum. In particular, we propose, SMTP, a momentum version of the stochastic three-point method (STP) Bergou et al. (2019). We show new complexity results for non-convex, convex and strongly convex functions. We test our method on a collection of learning to continuous control tasks on several MuJoCo Todorov et al. (2012) environments with varying difficulty and compare against STP, other state-of-the-art derivative-free optimization algorithms and against policy gradient methods. SMTP significantly outperforms STP and all other methods that we considered in our numerical experiments. Our second contribution is SMTP with importance sampling which we call SMTP_IS. We provide convergence analysis of this method for non-convex, convex and strongly convex objectives.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICLR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers