12/07/2020

Variance Reduced Coordinate Descent with Acceleration: New Method With a Surprising Application to Finite-Sum Problems

Filip Hanzely, Dmitry Kovalev, Peter Richtarik

Keywords: Optimization - Convex

Abstract: We propose an accelerated version of stochastic variance reduced coordinate descent -- ASVRCD. As other variance reduced coordinate descent methods such as SEGA or SVRCD, our method can deal with problems that include a non-separable and non-smooth regularizer, while accessing a random block of partial derivatives in each iteration only. However, ASVRCD incorporates Nesterov's momentum, which offers favorable iteration complexity guarantees over both SEGA and SVRCD. As a by-product of our theory, we show that a variant of Katyusha (Allen-Zhu, 2017) is a specific case of ASVRCD, recovering the optimal oracle complexity for the finite sum objective.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICML 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers