18/07/2021

Moreau-Yosida $f$-divergences

Dávid Terjék

Keywords: Optimization, Convex Optimization

Abstract: Variational representations of $f$-divergences are central to many machine learning algorithms, with Lipschitz constrained variants recently gaining attention. Inspired by this, we define the Moreau-Yosida approximation of $f$-divergences with respect to the Wasserstein-$1$ metric. The corresponding variational formulas provide a generalization of a number of recent results, novel special cases of interest and a relaxation of the hard Lipschitz constraint. Additionally, we prove that the so-called tight variational representation of $f$-divergences can be to be taken over the quotient space of Lipschitz functions, and give a characterization of functions achieving the supremum in the variational representation. On the practical side, we propose an algorithm to calculate the tight convex conjugate of $f$-divergences compatible with automatic differentiation frameworks. As an application of our results, we propose the Moreau-Yosida $f$-GAN, providing an implementation of the variational formulas for the Kullback-Leibler, reverse Kullback-Leibler, $\chi^2$, reverse $\chi^2$, squared Hellinger, Jensen-Shannon, Jeffreys, triangular discrimination and total variation divergences as GANs trained on CIFAR-10, leading to competitive results and a simple solution to the problem of uniqueness of the optimal critic.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICML 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers