06/12/2020

Fast Convergence of Langevin Dynamics on Manifold: Geodesics meet Log-Sobolev

Xiao Wang, Qi Lei, Ioannis Panageas

Keywords:

Abstract: Sampling is a fundamental and arguably very important task with numerous applications in Machine Learning. One approach to sample from a high dimensional distribution $e^{-f}$ for some function $f$ is the Langevin Algorithm (LA). Recently, there has been a lot of progress in showing fast convergence of LA even in cases where $f$ is non-convex, notably \cite{VW19}, \cite{MoritaRisteski} in which the former paper focuses on functions $f$ defined in $\mathbb{R}^n$ and the latter paper focuses on functions with symmetries (like matrix completion type objectives) with manifold structure. Our work generalizes the results of \cite{VW19} where $f$ is defined on a manifold $M$ rather than $\mathbb{R}^n$. From technical point of view, we show that KL decreases in a geometric rate whenever the distribution $e^{-f}$ satisfies a log-Sobolev inequality on $M$.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers