18/07/2021

Batch Value-function Approximation with Only Realizability

Tengyang Xie, Nan Jiang

Keywords: Algorithms, Multitask and Transfer Learning, Algorithms, Unsupervised Learning; Applications, Image Segmentation, Theory, RL, Decisions and Control Theory

Abstract: We make progress in a long-standing problem of batch reinforcement learning (RL): learning Q* from an exploratory and polynomial-sized dataset, using a realizable and otherwise arbitrary function class. In fact, all existing algorithms demand function-approximation assumptions stronger than realizability, and the mounting negative evidence has led to a conjecture that sample-efficient learning is impossible in this setting (Chen & Jiang, 2019). Our algorithm, BVFT, breaks the hardness conjecture (albeit under a stronger notion of exploratory data) via a tournament procedure that reduces the learning problem to pairwise comparison, and solves the latter with the help of a state-action-space partition constructed from the compared functions. We also discuss how BVFT can be applied to model selection among other extensions and open problems.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at ICML 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers