04/08/2021

Optimal dimension dependence of the Metropolis-Adjusted Langevin Algorithm

Sinho Chewi, Chen Lu, Kwangjun Ahn, Xiang Cheng, Thibaut Le Gouic, Philippe Rigollet

Keywords:

Abstract: Conventional wisdom in the sampling literature, backed by a popular diffusion scaling limit, suggests that the mixing time of the Metropolis-Adjusted Langevin Algorithm (MALA) scales as O(d^{1/3}), where d is the dimension. However, the diffusion scaling limit requires stringent assumptions on the target distribution and is asymptotic in nature. In contrast, the best known non-asymptotic mixing time bound for MALA on the class of log-smooth and strongly log-concave distributions is O(d). In this work, we establish that the mixing time of MALA on this class of target distributions is \tilde\Theta(d^{1/2}) under a warm start. Our upper bound proof introduces a new technique based on a projection characterization of the Metropolis adjustment which reduces the study of MALA to the well-studied discretization analysis of the Langevin SDE and bypasses direct computation of the acceptance probability.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at COLT 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers