03/08/2020

A Practical Riemannian Algorithm for Computing Dominant Generalized Eigenspace

Zhiqiang Xu, Ping Li

Keywords:

Abstract: Dominant generalized eigenspace computation, concerned with how to find one of the top-k generalized eigenspaces of a pair of real symmetric matrices, is one of the fundamental problems in scientific computing, data analysis, and statistics. In this work, we propose a practical Riemannian algorithm based on the first-order optimization on generalized Stiefel manifolds while efficiently leveraging second-order information. Particularly, we use inexact Riemannian gradients which result from running a fast least-squares solver to approximate matrix multiplications for avoiding costly matrix inversions involved therein. We also conduct a theoretical analysis that is different than existing ones, achieving a unified linear convergence rate regardless of the conventional generalized eigenvalue gap which is the key parameter to the currently dichotomized analysis: gap-dependent or gap-free. The resulting linear rate, albeit not optimal, remains valid in full generality. Despite the simplicity, empirically, our algorithm as a block generalized eigensolver remarkably outperforms existing solvers.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at UAI 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd

Similar Papers