13/04/2021

Minimax estimation of laplacian constrained precision matrices

Jiaxi Ying, José Vinícius de Miranda Cardoso, Daniel Palomar

Keywords:

Abstract: This paper considers the problem of high-dimensional sparse precision matrix estimation under Laplacian constraints. We prove that the Laplacian constraints bring favorable properties for estimation: the Gaussian maximum likelihood estimator exists and is unique almost surely on the basis of one observation, irrespective of the dimension. We establish the optimal rate of convergence under Frobenius norm by the derivation of the minimax lower and upper bounds. The minimax lower bound is obtained by applying Le Cam-Assouad’s method with a novel construction of a subparameter space of multivariate normal distributions. The minimax upper bound is established by designing an adaptive \ell_1-norm regularized maximum likelihood estimation method and quantifying the rate of convergence. We prove that the proposed estimator attains the optimal rate of convergence with an overwhelming probability. Numerical experiments demonstrate the effectiveness of the proposed estimator.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AISTATS 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers