06/12/2021

A Note on Sparse Generalized Eigenvalue Problem

Yunfeng Cai, Guanhua Fang, Ping Li

Keywords:

Abstract: The sparse generalized eigenvalue problem (SGEP) aims to find the leading eigenvector with sparsity structure. SGEP plays an important role in statistical learning and has wide applications including, but not limited to, sparse principal component analysis, sparse canonical correlation analysis and sparse Fisher discriminant analysis, etc. Due to the sparsity constraint, the solution of SGEP entails interesting properties from both numerical and statistical perspectives. In this paper, we provide a detailed sensitivity analysis for SGEP and establish the rate-optimal perturbation bound under the sparse setting. Specifically, we show that the bound is related to the perturbation/noise level and the recovery of the true support of the leading eigenvector as well. We also investigate the estimator of SGEP via imposing a non-convex regularization. Such estimator can achieve the optimal error rate and can recover the sparsity structure as well. Extensive numerical experiments corroborate our theoretical findings via using alternating direction method of multipliers (ADMM)-based computational method.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at NeurIPS 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers