13/04/2021

Adversarially robust estimate and risk analysis in linear regression

Yue Xing, Ruizhi Zhang, Guang Cheng

Keywords:

Abstract: Adversarial robust learning aims to design algorithms that are robust to small adversarial perturbations on input variables. Beyond the existing studies on the predictive performance to adversarial samples, our goal is to understand statistical properties of adversarial robust estimates and analyze adversarial risk in the setup of linear regression models. By discovering the statistical minimax rate of convergence of adversarial robust estimators, we emphasize the importance of incorporating model information, e.g., sparsity, in adversarial robust learning. Further, we reveal an explicit connection of adversarial and standard estimates, and propose a straightforward two-stage adversarial training framework, which facilitates to utilize model structure information to improve adversarial robustness. In theory, the consistency of the adversarial robust estimator is proven and its Bahadur representation is also developed for the statistical inference purpose. The proposed estimator converges in a sharp rate under either low-dimensional or sparse scenario. Moreover, our theory confirms two phenomena in adversarial robust learning: adversarial robustness hurts generalization, and unlabeled data help improve the generalization. In the end, we conduct numerical simulations to verify our theory.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AISTATS 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers