14/06/2020

Hierarchical Conditional Relation Networks for Video Question Answering

Thao Minh Le, Vuong Le, Svetha Venkatesh, Truyen Tran

Keywords: video question answering, visual question answering, conditional relation network, vision-language neural network

Abstract: Video question answering (VideoQA) is challenging as it requires modeling capacity to distill dynamic visual artifacts and distant relations and to associate them with linguistic concepts. We introduce a general-purpose reusable neural unit called Conditional Relation Network (CRN) that serves as a building block to construct more sophisticated structures for representation and reasoning over video. CRN takes as input an array of tensorial objects and a conditioning feature, and computes an array of encoded output objects. Model building becomes a simple exercise of replication, rearrangement and stacking of these reusable units for diverse modalities and contextual information. This design thus supports high-order relational and multi-step reasoning. The resulting architecture for VideoQA is a CRN hierarchy whose branches represent sub-videos or clips, all sharing the same question as the contextual condition. Our evaluations on well-known datasets achieved new SoTA results, demonstrating the impact of building a general-purpose reasoning unit on complex domains such as VideoQA.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers