02/02/2021

Mind-the-Gap! Unsupervised Domain Adaptation for Text-Video Retrieval

Qingchao Chen, Yang Liu, Samuel Albanie

Keywords:

Abstract: When can we expect a text-video retrieval system to work effectively on datasets that differ from its training domain? In this work, we investigate this question through the lens of unsupervised domain adaptation in which the objective is to match natural language queries and video content in the presence of domain shift at query-time. Such systems have significant practical applications since they are capable generalising to new data sources without requiring corresponding text annotations. We make the following contributions: (1) We propose the UDAVR (Unsupervised Domain Adaptation for Video Retrieval) benchmark and employ it to study the performance of text-video retrieval in the presence of domain shift. (2) We propose Concept-Aware-Pseudo-Query (CAPQ), a method for learning discriminative and transferable features that bridge these cross-domain discrepancies to enable effective target domain retrieval using source domain supervision. (3) We show that CAPQ outperforms alternative domain adaptation strategies on UDAVR.

The video of this talk cannot be embedded. You can watch it here:
https://slideslive.com/38948600
(Link will open in new window)
 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at AAAI 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers