14/06/2020

JL-DCF: Joint Learning and Densely-Cooperative Fusion Framework for RGB-D Salient Object Detection

Keren Fu, Deng-Ping Fan, Ge-Peng Ji, Qijun Zhao

Keywords: visual saliency, salient object detection, rgb-d, depth information, joint learning, dense connections, multi-modal features, feature fusion, deep learning, encoder-decoder

Abstract: This paper proposes a novel joint learning and densely-cooperative fusion (JL-DCF) architecture for RGB-D salient object detection. Existing models usually treat RGB and depth as independent information and design separate networks for feature extraction from each. Such schemes can easily be constrained by a limited amount of training data or over-reliance on an elaborately-designed training process. In contrast, our JL-DCF learns from both RGB and depth inputs through a Siamese network. To this end, we propose two effective components: joint learning (JL), and densely-cooperative fusion (DCF). The JL module provides robust saliency feature learning, while the latter is introduced for complementary feature discovery. Comprehensive experiments on four popular metrics show that the designed framework yields a robust RGB-D saliency detector with good generalization. As a result, JL-DCF significantly advances the top-1 D3Net model by an average of ~1.9% (S-measure) across six challenging datasets, showing that the proposed framework offers a potential solution for real-world applications and could provide more insight into the cross-modality complementarity task. The code will be available at https://github.com/kerenfu/JLDCF/.

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at CVPR 2020 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers