05/01/2021

DORi: Discovering Object Relationships for Moment Localization of a Natural Language Query in a Video

Cristian Rodriguez-Opazo, Edison Marrese-Taylor, Basura Fernando, Hongdong Li, Stephen Gould

Keywords:

Abstract: This paper studies the task of temporal moment localization in a long untrimmed video using natural language query. Given a query sentence, the goal is to determine the start and end of the relevant segment within the video. Our key innovation is to learn a video feature embedding through a language-conditioned message-passing algorithm suitable for temporal moment localization which captures the relationships between humans, objects and activities in the video. These relationships are obtained by a spatial subgraph that contextualized the scene representation using detected objects and human features. Moreover, a temporal sub-graph captures the activities within the video through time. Our method is evaluated on three standard benchmark datasets, and we also introduce YouCookII as a new benchmark for this task. Experiments show our method outperforms state-of-the-art methods on these datasets, confirming the effectiveness of our approach

 0
 0
 0
 0
This is an embedded video. Talk and the respective paper are published at WACV 2021 virtual conference. If you are one of the authors of the paper and want to manage your upload, see the question "My papertalk has been externally embedded..." in the FAQ section.

Comments

Post Comment
no comments yet
code of conduct: tbd Characters remaining: 140

Similar Papers